2 research outputs found

    Identification of Srp9 as a febrile seizure susceptibility gene

    Get PDF
    Objective: Febrile seizures (FS) are the most common seizure type in young children. Complex FS are a risk factor for mesial temporal lobe epilepsy (mTLE). To identify new FS susceptibility genes we used a forward genetic strategy in mice and subsequently analyzed candidate genes in humans. Methods: We mapped a quantitative trait locus (QTL1) for hyperthermia-induced FS on mouse chromosome 1, containing the signal recognition particle 9 (Srp9) gene. Effects of differential Srp9 expression were assessed in vivo and in vitro. Hippocampal SRP9 expression and genetic association were analyzed in FS and mTLE patients. Results: Srp9 was differentially expressed between parental strains C57BL/6J and A/J. Chromosome substitution strain 1 (CSS1) mice exhibited lower FS susceptibility and Srp9 expression than C57BL/6J mice. In vivo knockdown of brain Srp9 reduced FS susceptibility. Mice with reduced Srp9 expression and FS susceptibility, exhibited reduced hippocampal AMPA and NMDA currents. Downregulation of neuronal Srp9 reduced surface expression of AMPA receptor subunit GluA1. mTLE patients with antecedent FS had higher SRP9 expression than patients without. SRP9 promoter SNP rs12403575(G/A) was genetically associated with FS and mTLE. Interpretation: Our findings identify SRP9 as a novel FS susceptibility gene and indicate that SRP9 conveys its effects through endoplasmic reticulum (ER)-dependent synthesis and trafficking of membrane proteins, such as glutamate receptors. Discovery of this new FS gene and mechanism may provide new leads for early diagnosis and treatment of children with complex FS at risk for mTLE

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
    corecore